题目内容
已知函数
,
.
(Ⅰ)若函数
的图象在
处的切线与直线
平行,求实数
的值;
(Ⅱ)设函数
,对满足
的一切
的值,都有
成立,求实数
的取值范围;
(Ⅲ)当
时,请问:是否存在整数
的值,使方程
有且只有一个实根?若存在,求出整数
的值;否则,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211849896803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211849912431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211849990345.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850006562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850084323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850099540.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850115283.png)
(Ⅱ)设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850130701.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850146431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850115283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850177530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850208266.png)
(Ⅲ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850224396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850115283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850255558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850115283.png)
(Ⅰ)
..........(1分)
且由已知得:
........(2分)
...........(3分)
(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850364801.png)
.......(4分)
令
,即
则依题意:对满足
的一切
的值,都有
,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850489928.png)
解得:
......................(6分)
(Ⅲ)存在 ........................(7分)
理由如下: 方程
有且只有一个实根即为函数
的图象与直线
只有一个公共点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850567759.png)
(1)若
,则
,
在实数集R上单调递增
此时,函数
的图象与直线
只有一个公共点......(8分)
(2)若
,则
..........(9分)
列表如下:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118511911903.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118512071941.png)
依题意,必须满足
,即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211851254890.png)
综上:
...................(11分)
又
是整数,
可取
所以,存在整数
的值为
,使方程
有且只有一个实根
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850286754.png)
且由已知得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850302523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850318544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850349360.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850364801.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118503801000.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850396805.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850411807.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850146431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850115283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850458569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850474905.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850489928.png)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850505404.png)
(Ⅲ)存在 ........................(7分)
理由如下: 方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850255558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850006562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850552435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850567759.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850583195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850598369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850614552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850645473.png)
此时,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850006562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850552435.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850708387.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850864914.png)
列表如下:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 0 | ![]() | 0 | ![]() |
![]() | ![]() ![]() ![]() | ![]() | ![]() | ![]() | ![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118511911903.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118512071941.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850583195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211851238654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211851254890.png)
综上:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211851269503.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850115283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211851285305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211851316523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850115283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211851316523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211850255558.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目