题目内容
【题目】为抗击新型冠状病毒,普及防护知识,某校开展了“疫情防护”网络知识竞赛活动.现从参加该活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.
(1)求的值,并估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);
(2)在抽取的100名学生中,规定:比赛成绩不低于80分为“优秀”,比赛成绩低于80分为“非优秀”.请将下面的2×2列联表补充完整,并判断是否有99%的把握认为“比赛成绩是否优秀与性别有关”?
优秀 | 非优秀 | 合计 | |
男生 | 40 | ||
女生 | 50 | ||
合计 | 100 |
参考公式及数据:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
【答案】(1),74.5分;(2)表格见解析,有
【解析】
(1)根据频率和为1,求出,按照平均数公式,即可求解;
(2)由频率直方图求出,在抽取的100名学生中,比赛成绩优秀的人数,补全列联表,求出的观测值,结合提供数据,即可得出结论.
(1)由题可得,
解得.
因为,
所以估计这100名学生的平均成绩为74.5分
(2)由(1)知,在抽取的100名学生中,比赛成绩优秀的有人,由此可得完整的列联表:
优秀 | 非优秀 | 合计 | |
男生 | |||
女生 | |||
合计 |
∵的观测值,
∴有的把握认为“比赛成绩是否优秀与性别有关”.
【题目】为了进一步激发同学们的学习热情,某班级建立了数学英语两个学习兴趣小组,两组的人数如下表所示:
组别 性别 | 数学 | 英语 |
男 | 5 | 1 |
女 | 3 | 3 |
现采用分层抽样的方法(层内采用简单随机抽样)从两组中共抽取3名同学进行测试.
(1)求从数学组抽取的同学中至少有1名女同学的概率;
(2)记ξ为抽取的3名同学中男同学的人数,求随机变量ξ的分布列和数学期望.
【题目】某市的教育主管部门对所管辖的学校进行年终督导评估,为了解某学校师生对学校教学管理的满意度,分别从教师和不同年级的同学中随机抽取若干师生,进行评分(满分100分),绘制如下频率分布直方图(分组区间为, , , , , ),并将分数从低到高分为四个等级:
满意度评分 | ||||
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
已知满意度等级为基本满意的有340人.
(1)求表中的值及不满意的人数;
(2)在等级为不满意的师生中,老师占,现从该等级师生中按分层抽样抽取12人了解不满意的原因,并从中抽取3人担任整改督导员,记为老师整改督导员的人数,求的分布列及数学期望.
【题目】某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了名职工进行测试,得到频数分布表如下:
日组装个数 | ||||||
人数 | 6 | 12 | 34 | 30 | 10 | 8 |
(1)现从参与测试的日组装个数少于的职工中任意选取人,求至少有人日组装个数少于的概率;
(2)由频数分布表可以认为,此次测试得到的日组装个数服从正态分布,近似为这人得分的平均值(同一组数据用该组区间的中点值作为代表).
(
(ii)为鼓励职工提高技能,企业决定对日组装个数超过的职工日工资增加元,若在组装车间所有职工中任意选取人,求这三人增加的日工资总额的期望.
附:若随机变量服从正态分布,则,,.