题目内容

【题目】已知正方体ABCD﹣A1B1C1D1 , 则AC与平面BDC1所成角的余弦值为( )
A.
B.
C.
D.

【答案】B
【解析】解:以A1为原点建立如图所示的空间直角坐标系,
∵A1A⊥平面ABCD,∴A1A⊥BD,
又BD⊥AC,A1A与AC为平面A1AC内的相交直线,
∴BD⊥平面A1AC,
∴BD⊥A1C,
同理可证:BC1⊥A1C,
∴A1C⊥平面BDC1 , ∴ 是平面BDC1的一个法向量,
设正方体棱长为1,
=(1,1,1), =(1,1,0), =2,| |= ,| |=
∴cos< >= =
设AC与平面BDC1所成角为α,则sinα= ,∴cosα=
故选:B.

【考点精析】本题主要考查了空间角的异面直线所成的角的相关知识点,需要掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网