题目内容
已知在△ABC中,cosA=-
,a,b,c分别是角A,B,C所对的边
(Ⅰ)若a=3
,c=5,求b;
(Ⅱ)若sinB=
,求cosC的值.
4 |
5 |
(Ⅰ)若a=3
5 |
(Ⅱ)若sinB=
5 |
13 |
(Ⅰ)在△ABC中,由余弦定理得
a2=b2+c2-2bccosA,即(3
)2=b2+52-10b•(-
),…(4分)
解之得b=2(舍去-10).…(7分)
(Ⅱ)由sinB=
且B为锐角,得cosB=
,
∵cosA=-
,得sinA=
=
,…(9分)
故cosC=-cos(A+B)=sinAsinB-cosAcosB…(11分)
=
•
-(-
)•
=
…(14分)
a2=b2+c2-2bccosA,即(3
5 |
4 |
5 |
解之得b=2(舍去-10).…(7分)
(Ⅱ)由sinB=
5 |
13 |
12 |
13 |
∵cosA=-
4 |
5 |
1-cos2A |
3 |
5 |
故cosC=-cos(A+B)=sinAsinB-cosAcosB…(11分)
=
3 |
5 |
5 |
13 |
4 |
5 |
12 |
13 |
63 |
65 |
练习册系列答案
相关题目