题目内容
【题目】已知定义在上的函数,其导函数的大致图像如图所示,则下列叙述正确的是().
(1)
(2)函数在上递增,在上递减
(3)的极值点为c,e
(4)的极大值为
A. (1)(2) B. (2)(3) C. (3) D. (1)(4)
【答案】C
【解析】
根据导数与函数单调性的关系及所给图象可得f(x)的单调性,判断函数的极值即可.
由导数与函数单调性的关系知,当f′(x)>0时f(x)递增,f′(x)<0时f(x)递减,
结合所给图象知,x∈(a,c)时,f′(x)>0,
∴f(x)在(a,c)上单调递增,
x∈(c,e)时,f′(x)<0,
∴f(x)在(c,e)上单调递减,
函数f(x)在x=c处取得极大值,在x=e处取得极小值;
∴的极值点为c,e,
故选:C.
【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:
时间 | 第4天 | 第32天 | 第60天 | 第90天 |
价格(千元) | 23 | 30 | 22 | 7 |
(1)写出价格关于时间的函数关系式;(表示投放市场的第天);
(2)销售量与时间的函数关系:,则该产品投放市场第几天销售额最高?最高为多少千元?
【题目】基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:
月份 | 2017.8 | 2017.9 | 2017.10 | 2017.11 | 2017.12 | 2018.1 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
市场占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率与月份代码之间的关系;
(2)求关于的线性回归方程,并预测该公司2018年2月份的市场占有率;
(3)根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元/辆和800元/辆的两款车型报废年限各不相同.考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
经测算,平均每辆单车每年可以为公司带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据.如果你是该公司的负责人,你会选择采购哪款车型?
参考数据: , , .
参考公式:相关系数;
回归直线方程为,其中, .