题目内容

【题目】(本小题满分12)

已知关于的不等式,其中.

1)当变化时,试求不等式的解集

2)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若 能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.

【答案】时,;当时,

时,;(不单独分析时的情况不扣分)

时,

【解析】

解:()当时,…………………2

时,

时,;(不单独分析时的情况不扣分)………………4

时,. …………………6

)由(1)知:当时,集合中的元素的个数无限; …………………8

时,集合中的元素的个数有限,此时集合为有限集.

因为,当且仅当时取等号,

所以当时,集合的元素个数最少. …………………10

此时,故集合. …………………12

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网