ÌâÄ¿ÄÚÈÝ
8£®Èçͼ£¬¡÷ABCÖУ¬D£¬E·Ö±ðΪAB£¬ACµÄÖе㣬CDÓëBE½»ÓÚF£¬Éè$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬$\overrightarrow{AF}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$£¬Ôòm+n=£¨¡¡¡¡£©A£® | 1 | B£® | $\frac{4}{3}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{5}{6}$ |
·ÖÎö ÑÓ³¤AF½»BCÓÚµãM£¬ÓÉÓÚAD=DB£¬AE=EC£¬CDÓëBE½»ÓÚF£¬¿ÉÖª£ºµãFÊÇ¡÷ABCµÄÖØÐÄ£®ÀûÓÃÈý½ÇÐÎÖØÐĵÄÐÔÖʺÍÏòÁ¿µÄƽÐÐËıßÐη¨Ôò¼´¿ÉµÃ³ö£®
½â´ð ½â£ºÈçͼËùʾ£¬
ÑÓ³¤AF½»BCÓÚµãM£¬
¡ßAD=DB£¬AE=EC£¬CDÓëBE½»ÓÚF£¬
¡àµãFÊÇ¡÷ABCµÄÖØÐÄ£®
¡à$\overrightarrow{AF}$=$\frac{2}{3}\overrightarrow{AM}$£¬$\overrightarrow{AM}$=$\frac{1}{2}$£¨$\overrightarrow{AB}$+$\overrightarrow{AC}$£©£®
¡à$\overrightarrow{AF}$=$\frac{1}{3}$£¨$\overrightarrow{AB}$+$\overrightarrow{AC}$£©=$\frac{1}{3}$$\overrightarrow{a}$$+\frac{1}{3}\overrightarrow{b}$£®
¡ß$\overrightarrow{AF}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$£¬
¡àm=n=$\frac{1}{3}$£®
¡àm+n=$\frac{2}{3}$£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÁËÈý½ÇÐÎÖØÐĵÄÐÔÖʺÍÏòÁ¿µÄƽÐÐËıßÐη¨Ôò£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®Èôf£¨x£©=$\frac{1}{2}$£¨x+|x|£©£¬Ôòf£¨f£¨x£©£©ÊÇ£¨¡¡¡¡£©
A£® | x+|x| | B£® | 0 | C£® | $\left\{\begin{array}{l}{x£¬x¡Ü0}\\{0£¬x£¾0}\end{array}\right.$ | D£® | $\left\{\begin{array}{l}{x£¬x¡Ý0}\\{0£¬x£¼0}\end{array}\right.$ |
16£®¶þÏîʽ£¨x2-$\frac{2}{\sqrt{x}}$£©5µÄÕ¹¿ªÊ½Öг£ÊýÏîÊÇ£¨¡¡¡¡£©
A£® | -32 | B£® | 32 | C£® | 80 | D£® | -80 |
20£®·½³Ìx2-6px+p2=0ÓÐÁ½¸öʵÊý¸ùx1¡¢x2£¬Ôò$\frac{1}{{x}_{1}+p}$+$\frac{1}{{x}_{2}+p}$µÄֵΪ£¨¡¡¡¡£©
A£® | p | B£® | -p | C£® | -$\frac{1}{p}$ | D£® | $\frac{1}{p}$ |