题目内容
【题目】设函数,其中为正实数.
(1)若不等式恒成立,求实数的取值范围;
(2)当时,证明.
【答案】(1)(2)见解析
【解析】
(1)讨论研究函数的单调性,求出函数在上的最大值.要不等式恒成立,只需最大值小于零,即可求出.
(2)将原不等式等价变形为,由(1)可知,试证在时恒成立,即可由不等式性质证出.
(1)由题意得
设,则,
①当时,即时, ,
所以函数在上单调递增,,满足题意;
②当时,即时,则的图象的对称轴
因为,
所以在上存在唯一实根,设为,则当时,,
当时,,
所以在上单调递增,在上单调递减,
此时,不合题意.
综上可得,实数的取值范围是.
(2)等价于
因为,所以,所以原不等式等价于,
由(1)知当时,在上恒成立,整理得
令,则,
所以函数在区间上单调递增,
所以,即在上恒成立.
所以,当时,恒有,
练习册系列答案
相关题目