题目内容
【题目】平面直角坐标系中,直线的参数方程为,(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的极坐标方程与曲线的直角坐标方程;
(2)已知与直线平行的直线过点,且与曲线交于两点,试求.
【答案】(1)直线的极坐标方程为,曲线的直角坐标方程为.(2).
【解析】试题分析:(1)先利用加减消元法将直线的参数方程化为直角坐标方程,再利用,得直线的极坐标方程,最后根据,将曲线的极坐标方程化为直角坐标方程,(2)先根据点斜式写出直线方程,与抛物线方程联立,利用韦达定理以及弦长公式求.
试题解析:(1)将,代入直线方程得,
由可得,
曲线的直角坐标方程为.
(2)直线的倾斜角为,∴直线的倾斜角也为,又直线过点,
∴直线的参数方程为(为参数),将其代入曲线的直角坐标方程可得
,设点对应的参数分别为.
由一元二次方程的根与系数的关系知,,
∴ .
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数在某一周期内的图象时,列表并填入了部分数据,如下表:
① | |||||
(1)请将上面表格中①的数据填写在答题卡相应位置上,并直接写出函数的解析式;
(2)若将函数的图象上所有点的横坐标变为原来的倍,纵坐标不变,得到函数的图象,求当时,函数的单调递增区间;
(3)若将函数图象上的所有点向右平移个单位长度,得到的图象. 若图象的一个对称中心为,求的最小值.