题目内容
对于一切实数x不等式ax2+ax-2≤0恒成立,则a的取值范围为( )
A.(8,0) | B.[-8,0] | C.(8,0] | D.[-8,0) |
当a>0时,显然不能满足对于一切实数x不等式ax2+ax-2≤0恒成立.
当a=0时,对于一切实数x不等式ax2+ax-2≤0恒成立.
当a<0时,∵于一切实数x不等式ax2+ax-2≤0恒成立,∴△=a2+8a≤0,a≠0,
解得-8≤a<0.
综上可得,-8≤a≤0,
故选B.
当a=0时,对于一切实数x不等式ax2+ax-2≤0恒成立.
当a<0时,∵于一切实数x不等式ax2+ax-2≤0恒成立,∴△=a2+8a≤0,a≠0,
解得-8≤a<0.
综上可得,-8≤a≤0,
故选B.
练习册系列答案
相关题目