题目内容
【题目】已知曲线的参数方程为:(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的直角坐标方程为.
(l)求曲线和直线的极坐标方程;
(2)已知直线分别与曲线、曲线交异于极点的,若的极径分别为,求的值.
【答案】(1),;(2)3.
【解析】
(1)曲线为圆:,用公式代入,得极坐标方程,直线过原点,且倾斜角为,所以直线的极坐标方程为;(2)曲线均为圆且都过极点O,所以代入,分别求得极径分别为,代入即求解.
(1)曲线的参数方程为(为参数),普通方程为,
极坐标方程为,
∵直线的直角坐标方程为,
故直线的极坐标方程为.
(2)曲线的极坐标方程为:,
直线的极坐标方程为,
将代入的极坐标方程得,
将代入的极坐标方程得,
∴.
练习册系列答案
相关题目