题目内容

【题目】在三棱锥中, 是边长为的等边三角形, 分别是的中点.

(1)求证: 平面

(2)求证: 平面

(3)求三棱锥的体积.

【答案】(1)见解析(2)见解析(3).

【解析】试题分析:(1)欲证OD∥平面PAC,根据直线与平面平行的判定定理可知只需证OD与平面PAC内一直线平行,而OD∥PA,PA平面PAC,OD平面PAC,满足定理条件; (2)欲证平面PAB⊥平面ABC,根据面面垂直的判定定理可知在平面PAB内一直线与平面ABC垂直,而根据题意可得PO平面ABC;

(3)根据OP垂直平面ABC得到OP为三棱锥P-ABC的高,根据三棱锥的体积公式可求出三棱锥P-ABC的体积.又因为D为PB中点,所以高是PO的一半.

试题解析:(1)∵分别为的中点,

.

平面, 平面

平面.

(2)连接,∵中点, ,

.

同理, .

.

.

平面.

(3)由(2)可知平面

为三棱锥的高,且.

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网