ÌâÄ¿ÄÚÈÝ
10£®ÒÔƽÃæÖ±½Ç×ø±êϵxOyµÄÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®Ô²CµÄÔ²ÐÄCµÄ¼«×ø±êΪ£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬°ë¾¶r=$\sqrt{2}$£®£¨1£©ÔÚ¼«×ø±êϵÖУ¬Ö±ÏߦÈ=$\frac{¦Ð}{3}$£¨¦Ñ¡ÊR£©ÓëÔ²C½»ÓÚÁ½µã£¬ÇóÁ½µã¼äµÄ¾àÀ룻
£¨2£©ÔÚÖ±½Ç×ø±êϵxOyÖУ¬¹ýÔ²CÄڵĶ¨µãM£¨1£¬0£©×÷Ö±Ïßl£¬Ö±ÏßlÓëÔ²C½»ÓÚA£¬BÁ½µã£¬ÒÔÖ±ÏßlµÄÇãб½ÇΪ²ÎÊý£¬ÇóÏÒABÖеãNµÄ¹ì¼£·½³Ì£®
·ÖÎö £¨1£©Çó³öÔ²CµÄ¡¢Ö±ÏßµÄÖ±½Ç×ø±ê·½³Ì£¬¿ÉÇóÔ²Ðĵ½Ö±ÏߵľàÀ룬ÀûÓù´¹É¶¨ÀíÇóÁ½µã¼äµÄ¾àÀ룻
£¨2£©ÉèÖ±ÏßlµÄÇãб½ÇΪ¦È£¬ÔòÓÉÌâÒ⣬¡ÏMCN=¦È£¬CN=cos¦È£¬¼´¿ÉÇó³öÏÒABÖеãNµÄ¹ì¼£·½³Ì£®
½â´ð ½â£º£¨1£©Ô²CµÄÔ²ÐÄCµÄ¼«×ø±êΪ£¨$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬°ë¾¶r=$\sqrt{2}$£¬Ö±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+£¨y-1£©2=2£®
Ö±ÏߦÈ=$\frac{¦Ð}{3}$£¨¦Ñ¡ÊR£©µÄÖ±½Ç×ø±ê·½³ÌΪy=$\sqrt{3}$x£¬
Ô²Ðĵ½Ö±ÏߵľàÀëΪ$\frac{|\sqrt{3}-1|}{\sqrt{3+1}}$=$\frac{\sqrt{3}-1}{2}$£¬
¡àÁ½µã¼äµÄ¾àÀëΪ2$\sqrt{2-£¨\frac{\sqrt{3}-1}{2}£©^{2}}$=$\frac{\sqrt{3}+1}{2}$£»
£¨2£©ÉèÖ±ÏßlµÄÇãб½ÇΪ¦È£¬ÔòÓÉÌâÒ⣬¡ÏMCN=¦È£¬CN=cos¦È
ÉèN£¨x£¬y£©£¬Ôòx=1+CNsin¦È=1+cos¦Èsin¦È£¬y=1-cos2¦È£¬
¼´ÏÒABÖеãNµÄ¹ì¼£·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Èsin¦È}\\{y=1-co{s}^{2}¦È}\end{array}\right.$£®
µãÆÀ ±¾Ì⿼²é¼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬Õýȷת»¯Êǹؼü£®
A£® | £¨0£¬$\frac{3}{2}$] | B£® | £¨1£¬$\frac{3}{2}$] | C£® | £¨1£¬$\frac{3}{4}$] | D£® | £¨1£¬$\frac{7}{4}$] |
A£® | $\root{3}{4V}$ | B£® | $\root{3}{6V}$ | C£® | $\root{3}{8V}$ | D£® | $\sqrt{4V}$ |
A£® | AC¡ÍƽÃæABB1A1 | B£® | CC1ÓëB1EÊÇÒìÃæÖ±Ïß | ||
C£® | A1C1¡ÎB1E | D£® | AE¡ÍBB1 |
A£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{3}$¸ö³¤¶Èµ¥Î» | B£® | Ïò×óƽÒÆ$\frac{¦Ð}{3}$¸ö³¤¶Èµ¥Î» | ||
C£® | ÏòÓÒƽÒÆ$\frac{¦Ð}{6}$¸ö³¤¶Èµ¥Î» | D£® | Ïò×óƽÒÆ$\frac{¦Ð}{6}$¸ö³¤¶Èµ¥Î» |