题目内容

【题目】已知f(x)是R上的奇函数,且当x>0时,f(x)=-2x2+4x+3.
(1)求f(x)的表达式;
(2)画出f(x)的图象,并指出f(x)的单调区间.

【答案】
(1)解:设x<0,则-x>0,
于是f(-x)=-2(-x)2-4x+3=-2x2-4x+3.
又∵f(x)为奇函数,∴f(-x)=-f(x).
因此f(x)=2x2+4x-3.
又∵f(0)=0,
∴f(x)=
(2)解:先画出y=f(x)(x>0)的图象,利用奇函数的对称性可得到相应y=f(x)(x<0)的图象,其图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).

【解析】(1)由奇函数在y轴一偶的解析式,由对称性可求出在y轴另一偶的解析式;
(2)函数是分段函数,作出图象,由图象观察得到单调区间.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网