题目内容
【题目】已知定义在 上的函数满足 ,当 时, .
(1)求证: 为奇函数;
(2)求证: 为 上的增函数;
(3)解关于 的不等式: (其中 且 为常数).
【答案】
(1)解:由题意知 ,令 ,得 ,即 .
再令 ,即 ,得 .
∴ ,
∴ 是奇函数
(2)解:设 ,且 ,则 .
由已知得: ,
∴ ,
∴ .
即 在 上是增函数
(3)解:∵ ,∴ ,
∴ .
即 .
∵ ,∴ .
当 ,即 时,所求不等式的解集为 或 .
当 ,即 时, 所求不等式的解集为 .
当 ,即 时, 所求不等式的解集为 或
【解析】(1)抽象函数的奇偶性判断,可由函数所满足的条件,取特殊值,得到f(x)与f(-x)的关系进行判断;
(2)抽象函数的单调性,用定义证明;
(3)将函数不等式进行转化为标准型,由单调性脱去f得到关于x的含参数a的不等式,分类讨论求解,得解集.
【考点精析】本题主要考查了函数的奇偶性和奇偶性与单调性的综合的相关知识点,需要掌握偶函数的图象关于y轴对称;奇函数的图象关于原点对称;奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能正确解答此题.
【题目】某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
高一年级 | 高二年级 | 高三年级 | |
跑步人数 | a | b | c |
登山人数 | x | y | z |
其中a∶b∶c=2∶5∶3,全校参与登山的人数占总人数的 .为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )
A.15人
B.30人
C.40人
D.45人
【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比实验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如图,两个班人数均为60人,成绩80分及以上为优良.
(1)根据以上信息填好2×2联表,并判断出有多大的把握认为学生
(2)成绩优良与班级有关?
(3)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.(以下临界值及公式仅供参考)
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
k2= ,n=a+b+c+d.