题目内容
【题目】已知抛物线:().
(1)若抛物线的焦点到准线的距离为4,点,在抛物线上,线段的中点为,求直线的方程;
(2)若圆以原点为圆心,1为半径,直线与,分别相切,切点分别为,,求的最小值.
【答案】(1);(2)
【解析】
(1)由距离为4可求出进而可求出抛物线的方程.设,,代入到抛物线方程中,两式相减,结合中点坐标,即可求出的斜率,结合直线的点斜式,可求出直线的方程.
(2)设直线的方程为(),与抛物线、圆的方程联立,结合相切,可求,.设,通过切点既在直线上又在抛物线上,可求出,,从而,结合基本不等式,可求出有最小值.
解:(1)由抛物线的焦点到准线的距离为4,得.所以抛物线的方程为.
设,,则,所以,即
.因为线段的中点的坐标为,
所以且.所以.
故直线的方程为,即直线的方程为
经检验符合题意.
(2)设直线的方程为().代入,得.(*)
由直线与抛物线相切可知,,故.①
又直线与圆相切,所以,即.②
联立①②,得,故.
设,解(*)式可得,,从而.
故,
当且仅当时,有最小值,为.
【题目】《中央广播电视总台2019主持人大赛》是中央人民广播电视总台成立后推出的第一个电视大赛,由撒贝宁担任主持人,康辉、董卿担任点评嘉宾,敬一丹、鲁健、朱迅、俞虹、李洪岩等17位担任专业评审.从2019年10月26日起,每周六20:00在中央电视台综合频道播出.某传媒大学为了解大学生对主持人大赛的关注情况,分别在大一和大二两个年级各随机抽取了100名大学生进行调查.下图是根据调查结果绘制的学生场均关注比赛的时间频率分布直方图和频数分布表,并将场均关注比赛的时间不低于80分钟的学生称为“赛迷”.
大二学生场均关注比赛时间的频数分布表
时间分组 | 频数 |
12 | |
20 | |
24 | |
22 | |
16 | |
6 |
(1)将频率视为概率,估计哪个年级的大学生是“赛迷”的概率大,请说明理由;
(2)已知抽到的100名大一学生中有男生50名,其中10名为“赛迷”试完成下面的列联表,并据此判断是否有的把握认为“赛迷”与性别有关.
非“赛迷” | “赛迷” | 合计 | |
男 | |||
女 | |||
合计 |
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
【题目】疫情爆发以来,相关疫苗企业发挥专业优势与技术优势争分夺秒开展疫苗研发.为测试疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),选定2000个样本分成三组,测试结果如“下表:
组 | 组 | 组 | |
疫苗有效 | 673 | ||
疫苗无效 | 77 | 90 |
已知在全体样本中随机抽取1个,抽到组疫苗有效的概率是0.33.
(1)求,的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,求组应抽取多少个?
(3)已知,,求疫苗能通过测试的概率.