题目内容
【题目】设,是方程的两个不等实数根,记().下列两个命题( )
①数列的任意一项都是正整数;
②数列存在某一项是5的倍数.
A.①正确,②错误B.①错误,②正确
C.①②都正确D.①②都错误
【答案】A
【解析】
利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误.
因为,是方程的两个不等实数根,
所以,,
因为,
所以
,
即当时,数列中的任一项都等于其前两项之和,
又,,
所以,,,
以此类推,即可知数列的任意一项都是正整数,故①正确;
若数列存在某一项是5的倍数,则此项个位数字应当为0或5,
由,,依次计算可知,
数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,
故数列中不存在个位数字为0或5的项,故②错误;
故选:A.
【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.