题目内容
【题目】已知函数是单调递增函数,其反函数是.
(1)若,求并写出定义域;
(2)对于⑴的和,设任意,,,求证:;
(3)已知函数和的图象有交点,求证:它们的交点一定在直线上.
【答案】(1),;(2)证明见详解;(3)证明见详解.
【解析】
(1)根据反函数的求解过程,即可求得,再求原函数值域,即为反函数的定义域;
(2)根据(1)中所求,用分析法将不等式进行不断转换,即可证明;
(3)根据互为反函数的两个函数的特点,以及函数单调性,即可证明.
(1)因为,故可得,又因为
故,故;
又因为在时,单调递增,故其值域为
故的定义域为;
综上所述:,.
(2)由(1)可知,
要证
即证
也就是证
因为,故,则,同理可得
故成立,
则原不等式成立,即证.
(3)证明:设是函数与的交点,
故可得
故可得
即过点和
又因为是单调第增函数,
故当时,,即,这与题设矛盾;
当时,,即,这也与题设矛盾;
当时,,即,满足题意.
综上所述,若与有交点,则交点一定在直线上,即证.
练习册系列答案
相关题目
【题目】已知对某校的100名学生进行不记名问卷调查,内容为一周的课外阅读时长和性别等进行统计,如表:
(1)课外阅读时长在20以下的女生按分层抽样的方式随机抽取7人,再从7人中随机抽取2人,求这2人课外阅读时长不低于15的概率;
(2)将课外阅读时长为25以上的学生视为“阅读爱好”者,25以下的学生视为“非阅读爱好”者,根据以上数据完成2×2列联表:
非阅读爱好者 | 阅读爱好者 | 总计 | |
女生 | |||
男生 | |||
总计 |
能否在犯错概率不超过0.01的前提下,认为学生的“阅读爱好”与性别有关系?
附:,
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |