题目内容
【题目】某车间生产甲、乙两种产品,已知制造一件甲产品需要种元件5个,种元件2个,制造一件乙种产品需要种元件3个,种元件3个,现在只有种元件180个,种元件135个,每件甲产品可获利润20元,每件乙产品可获利润15元,试问在这种条件下,应如何安排生产计划才能得到最大利润?
【答案】甲产品生产30件,乙产品生产15件的条件下,才能得到最大利润825元.
【解析】
画出图表,得到约束条件,列出目标函数,利用线性规划知识求解即可.
依题意有如下表格:
利润 | |||
甲产品 | 5 | 2 | 20(元/件) |
乙产品 | 3 | 3 | 15(元/件) |
设生产甲产品件,设生产乙产品件,
故有如下不等式组:,利润,如图:
由,解得,
,经过可行域的时,取得最大值:此时,
故在甲产品生产30件,乙产品生产15件的条件下,才能得到最大利润825元.
【题目】小军的微信朋友圈参与了“微信运动”,他随机选取了40位微信好友(女20人,男20人),统计其在某一天的走路步数.其中,女性好友的走路步数数据记录如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步数情况可分为五个类别(说明:a~b表示大于等于a,小于等于b)
A(0~2000步)1人, B(2001-5000步)2人, C(5001~8000步)3人,
D(8001-10000步)6人, E(10001步及以上)8人
若某人一天的走路步数超过8000步被系统认定为“健康型”否则被系统认定为“进步型”.
(I)访根据选取的样本数据完成下面的2×2列联表,并根据此判断能否有95%以上的把握认为“认定类型”与“性别”有关?
健康型 | 进步型 | 总计 | |
男 | 20 | ||
女 | 20 | ||
总计 | 40 |
(Ⅱ)如果从小军的40位好友中该天走路步数超过10000的人中随机抽取3人,设抽到女性好友X人,求X的分布列和数学期望.
附:.