题目内容

【题目】已知等差数列的公差不为零,,且成等比数列.

(1)求的通项公式;

(2)求.

【答案】(1)(1)Sn=-3n2+28n

【解析】

(1)设等差数列{an}的公差为d≠0,利用成等比数列的定义可得,a112=a1a1,再利用等差数列的通项公式可得(a1+10d)2=a1(a1+12d),化为d(2a1+25d)=0,解出d即可得到通项公式an
(2)由(1)可得a3n-2=-2(3n-2)+27=-6n+31,可知此数列是以25为首项,-6为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n-2

(1)设{an}的公差为d.由题意,a112=a1a13,即(a1+10d)2=a1(a1+12d).

于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),d=-2.故an=-2n+27.

(2)令Sn=a1+a4+a7+…+a3n-2.

由(1)知a3n-2=-6n+31,故{a3n-2}是首项为25,公差为-6的等差数列.

从而Sn= (a1a3n-2)= (-6n+56)=-3n2+28n.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网