ÌâÄ¿ÄÚÈÝ
11£®ÎªÁËÑо¿Ä³ÖÖϸ¾úËæʱ¼äx±ä»¯£¬·±Ö³µÄ¸öÊý£¬ÊÕ¼¯Êý¾ÝÈçÏ£ºÌìÊýx/Ìì | 1 | 2 | 3 | 4 | 5 | 6 |
·±Ö³¸öÊýy/¸ö | 6 | 12 | 25 | 49 | 95 | 190 |
$\overline x$ | $\overline y$ | $\overline z$ | $\sum_{i=1}^6{£¨{x_i}-\overline x}{£©^2}$ | $\sum_{i=1}^6{£¨{x_i}-\overline x}£©£¨{y_i}-\overline y£©$ | $\sum_{i=1}^6{£¨{x_i}-\overline x}£©£¨{z_i}-\overline z£©$ |
3.5 | 6283 | 3.53 | 17.5 | 596.505 | 12.04 |
£¨2£©¸ù¾Ý£¨1£©µÄÅжÏ×î¼Ñ½á¹û¼°±íÖеÄÊý¾Ý£¬½¨Á¢y¹ØÓÚx µÄ»Ø¹é·½³Ì£®
²Î¿¼¹«Ê½£º$b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$$a=\overline y-b\overline x$£®
·ÖÎö £¨1£©¸ù¾ÝÊÕ¼¯Êý¾Ý£¬¿ÉµÃÊý¾ÝµÄÉ¢µãͼ£»
£¨2£©ÓÉÉ¢µãͼ¿´³öÑù±¾µã·Ö²¼ÔÚÒ»ÌõÖ¸ÊýÐÍÇúÏßy=cebx£¨c£¾0£©µÄÖÜΧ£¬Ôòlny=bx+lnc£®±ä»»ºóµÄÑù±¾µã·Ö²¼ÔÚÒ»ÌõÖ±Ï߸½½ü£¬Òò´Ë¿ÉÒÔÓÃÏßÐԻع鷽³ÌÀ´ÄâºÏ£¬¼´¿ÉÇó³öy¶ÔxµÄ»Ø¹é·½³Ì£®
½â´ð ½â£º£¨1£©×÷³öÉ¢µãͼÈçͼ1Ëùʾ£®
ÓÉÉ¢µãͼ¿´³öÑù±¾µã·Ö²¼ÔÚÒ»ÌõÖ¸Êýº¯Êýy=${C_1}{e^{{C_2}x}}$µÄÖÜΧ£¬ÓÚÊÇÑ¡Ôñy=${C_1}{e^{{C_2}x}}$
£¨2£©ÁîZ=lny£¬Ôò$\hat Z=bX+a$
x | 1 | 2 | 3 | 4 | 5 | 6 |
Z | 1.79 | 2.48 | 3.22 | 3.89 | 4.55 | 5.25 |
´Óͼ2¿ÉÒÔ¿´³ö£¬±ä»»ºóµÄÑù±¾µã·Ö²¼ÔÚÒ»ÌõÖ±Ï߸½½ü£¬Òò´Ë¿ÉÒÔÓÃÏßÐԻع鷽³ÌÀ´ÄâºÏ£®
ÓÉ$b=\frac{{\sum_{i=1}^6{£¨{x_i}-\overline x£©£¨{z_i}-\overline z£©}}}{{\sum_{i=1}^6{{{£¨{x_i}-\overline x£©}^2}}}}$=$\frac{12.04}{17.5}=0.688$£¬$a=\overline z-b\overline x$=1.122
µÃ$\hat Z=0.688X+1.122$£» ÔòÓÐ$\hat y={e^{0.688x+1.122}}$
µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³Ì£¬¿¼²éÉ¢µãͼ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®ÔÚ¡÷ABCÖУ¬a=4£¬b=7£¬sinB=$\frac{1}{4}$£¬ÔòsinA=£¨¡¡¡¡£©
A£® | $\frac{1}{7}$ | B£® | $\frac{7}{16}$ | C£® | $\frac{7}{8}$ | D£® | $\frac{4}{7}$ |
19£®¶Ô¾ßÓÐÏßÐÔÏà¹Ø¹ØϵµÄ±äÁ¿x£¬yÓÐÒ»×é¹Û²âÊý¾Ý£¨xi£¬yi£©£¨i=1£¬2£¬¡8£©£¬Æä»Ø¹éÖ±Ïß·½³ÌÊÇ$\hat y=\frac{1}{3}$x+a£¬ÇÒx1+x2+x3+¡+x8=2£¨y1+y2+y3+¡+y8£©=6£¬ÔòʵÊýaµÄÖµÊÇ£¨¡¡¡¡£©
A£® | $\frac{1}{16}$ | B£® | $\frac{1}{8}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{1}{2}$ |