题目内容

20.已知某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.

(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否能在犯错误的概率不超过0.1的前提下认为“生产能手与工人所在的年龄组有关”?(相关系数k=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{2}^{n}+1}$,k>2.706时有99%的把握具有相关性)

分析 (1)由分层抽样的特点可得样本中有25周岁以上、下组工人人数,再由所对应的频率可得样本中日平均生产件数不足60件的工人中,25周岁以上、下组工人的人数分别为3,2,由古典概型的概率公式可得答案;
(2)由频率分布直方图可得“25周岁以上组”中的生产能手的人数,以及“25周岁以下组”中的生产能手的人数,据此可得2×2列联表,可得k2≈1.79,由1.79<2.706,可得结论.

解答 解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名,
所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),
记为A1,A2,A3.25周岁以下组工人有40×0.05=2(人),记为B1,B2
从中随机抽取2名工人,所有可能的结果共有10种,即:
(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),
(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).
其中,至少抽到一名“25周岁以下组”工人的可能结果共有7种,是:
(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).
故所求概率P=$\frac{7}{10}$.
(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:

生产能手非生产能手总计
25周岁以上组154560
25周岁以下组152540
总计3070100
所以得:k=$\frac{100×(15×25-15×45)^{2}}{60×40×30×70}$=$\frac{25}{14}$≈1.79.
因为1.79<2.706,所以不能在犯错误的概率不超过0.1的前提下认为“生产能手与工人所在的年龄组有关”.

点评 本题考查独立性检验,涉及频率分布直方图,以及古典概型的概率公式,属中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网