题目内容
【题目】已知函数 .
(1)求函数的极小值;
(2)求证:当时,.
【答案】(1)见解析(2)见解析
【解析】
(1)由题意可得分类讨论函数的极小值即可.
(2)令,原问题等价于,即证.据此分类讨论,和三种情况即可证得题中的结论.
(1)
当时,即时,,函数在上单调递增,无极小值;
当时,即时,,函数在上单调递减;
,函数在上单调递增;
,
综上所述,当时,无极小值;当时,
(2)令
当时,要证:,即证,即证,
要证,即证.
①当时,
令,,所以在单调递增,
故,即.
,
令,,
当,在单调递减;,在单调递增,故,即.当且仅当时取等号
又,
由、可知
所以当时,
②当时,即证.令,,在上单调递减,在上单调递增,,故
③当时,当时,,由②知,而,
故;
当时,,由②知,故;
所以,当时,.
综上①②③可知,当时,.
【题目】某便利店计划每天购进某品牌鲜奶若干件,便利店每销售一瓶鲜奶可获利元;若供大于求,剩余鲜奶全部退回,但每瓶鲜奶亏损元;若供不应求,则便利店可从外调剂,此时每瓶调剂品可获利元.
(1)若便利店一天购进鲜奶瓶,求当天的利润(单位:元)关于当天鲜奶需求量(单位:瓶,)的函数解析式;
(2)便利店记录了天该鲜奶的日需求量(单位:瓶,)整理得下表:
日需求量 | ||||||
频数 |
若便利店一天购进瓶该鲜奶,以天记录的各需求量的频率作为各需求量发生的概率,求当天利润在区间内的概率.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响.对近六年的年宣传费和年销售量()的数据作了初步统计,得到如下数据:
年份 | ||||||
年宣传费(万元) | ||||||
年销售量(吨) |
经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式().对上述数据作了初步处理,得到相关的值如表:
(1)根据所给数据,求关于的回归方程;
(2)已知这种产品的年利润与,的关系为若想在年达到年利润最大,请预测年的宣传费用是多少万元?
附:对于一组数据,,…,,其回归直线中的斜率和截距的最小二乘估计分别为,