题目内容
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量
(单位:吨)和年利润
(单位:万元)的影响.对近六年的年宣传费
和年销售量
(
)的数据作了初步统计,得到如下数据:
年份 | ||||||
年宣传费 | ||||||
年销售量 |
经电脑模拟,发现年宣传费(万元)与年销售量
(吨)之间近似满足关系式
(
).对上述数据作了初步处理,得到相关的值如表:
(1)根据所给数据,求关于
的回归方程;
(2)已知这种产品的年利润与
,
的关系为
若想在
年达到年利润最大,请预测
年的宣传费用是多少万元?
附:对于一组数据,
,…,
,其回归直线
中的斜率和截距的最小二乘估计分别为
,
【答案】(1)(2)当2018年的宣传费用为98万元时,年利润有最大值.
【解析】
(1)转化方程,结合线性回归方程参数计算公式,计算,即可。(2)将z函数转化为二次函数,计算最值,即可。
(1)对,(
,
),两边取对数得
,
令,
,得
,
由题目中的数据,计算,
,
且
,
;
则
,
,
得出,
所以关于
的回归方程是
;
(2)由题意知这种产品的年利润z的预测值为
,
所以当,即
时,
取得最大值,
即当2019年的年宣传费用是万元时,年利润有最大值.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】《中华人民共和国民法总则》(以下简称《民法总则》)自2017年10月1日起施行。作为民法典的开篇之作,《民法总则》与每个人的一生息息相关.某地区为了调研本地区人们对该法律的了解情况,随机抽取50人,他们的年龄都在区间[25,85]上,年龄的频率分布及了解《民法总则》的人数如下表:
年龄 | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) | [75,85) |
频数 | 5 | 5 | 10 | 15 | 5 | 10 |
了解《民法总则》 | 1 | 2 | 8 | 12 | 4 | 5 |
(Ⅰ)填写下面2×2 列联表,并判断是否有99%的把握认为以45岁为分界点对了解《民法总则》政策有差异;
(Ⅱ)若对年龄在[45,55),[65,75)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解《民法总则》的人数为X,求随机变量X的分布列和数学期望.