题目内容

【题目】对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)﹣g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2 , g(x)=2x﹣2;② ,g(x)=x+2;
③f(x)=ex ;④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“友好点”的是 . (填上所有正确的序号)

【答案】①④
【解析】解:①f(x)﹣g(x)=x2﹣2x+2=(x﹣1)2+1≥1,∴要使|f(x0)﹣g(x0)|≤1,则只有当x0=1时,满足条件,
∴在区间(0,+∞)上的存在唯一“友好点”,∴①正确.
②g(x)﹣f(x)=x﹣ +2= ,∴不存在x0∈D,使|f(x0)﹣g(x0)|≤1,∴函数不存在“友好点”,∴②错误.
③设h(x)=f(x)﹣g(x)=ex+ 则函数h(x)在(0,+∞)上单调减,∴x→0,h(x)→+∞,x→+∞,h(x)→0,使|f(x0)﹣g(x0)|≤1的x0不唯一,
∴③不满足条件,∴③错误.
④h(x)=g(x)﹣f(x)=x﹣lnx,(x>0),h′(x)=1﹣
令h′(x)>0,可得x>1,令h′(x)<0,可得0<x<1,
∴x=1时,函数取得极小值,且为最小值,最小值为h(1)=1﹣0=1,
∴g(x)﹣f(x)≥1,
∴当x0=1时,使|f(x0)﹣g(x0)|≤1的x0唯一,∴④满足条件.
所以答案是:①④.
【考点精析】关于本题考查的函数的概念及其构成要素,需要了解函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网