题目内容

设椭圆方程为x2+
y2
4
=1
,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,点P满足
OP
=
1
2
(
OA
+
OB
)
,点N的坐标为(
1
2
1
2
)
,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)|
NP
|
的最小值与最大值.
(1)直线l过点M(0,1)设其斜率为k,则l的方程为y=kx+1.
记A(x1,y1)、B(x2,y2),由题设可得点A、B的坐标是方程组
y=kx+1①
x2+
y2
4
=1②
的解.
将①代入②并化简得,(4+k2)x2+2kx-3=0,所以
x1+x2=-
2k
4+k2
y1+y2=
8
4+k2
.

于是
OP
=
1
2
(
OA
+
OB
)=(
x1+x2
2
y1+y2
2
)=(
-k
4+k2
4
4+k2
)

设点P的坐标为(x,y),则
x=
-k
4+k2
y=
4
4+k2
.
消去参数k得4x2+y2-y=0③
当k不存在时,A、B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方
程为4x2+y2-y=0.
(2)由点P的轨迹方程知x2
1
16
,即-
1
4
≤x≤
1
4
.所以|
NP
|2=(x-
1
2
)2+(y-
1
2
)2=(x-
1
2
)2+
1
4
-4x2=-3(x+
1
6
)2+
7
12

故当x=
1
4
|
NP
|
取得最小值,最小值为
1
4
;当x=-
1
6
时,|
NP
|
取得最大值,
最大值为
21
6
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网