题目内容

已知椭圆C:
x2
4
+
y2
3
=1
,直线l过点M(m,0).
(Ⅰ)若直线l交y轴于点N,当m=-1时,MN中点恰在椭圆C上,求直线l的方程;
(Ⅱ)如图,若直线l交椭圆C于A,B两点,当m=-4时,在x轴上是否存在点p,使得△PAB为等边三角形?若存在,求出点p坐标;若不存在,请说明理由.
(Ⅰ)设点N(0,n),则MN的中点为(-
1
2
n
2
),
(-
1
2
)2
4
+
(
n
2
)2
3
=1,解得n=±
3
2
5

所以直线l的方程为:y=±
3
2
5
(x+1).
(Ⅱ)假设在x轴上存在点P,使得△PAB为等边三角形.
设直线l为x=ty-4,A(x1,y1),B(x2,y2),
x=ty-4
3x2+4y2=12
,∴(3t2+4)y2-24ty+36=0,
∴y1+y2=
24t
3t2+4
y1y2=
36
3t2+4
,△=144(t2-4)>0,
∴AB中点为(
-16
3t2+4
12t
3t2+4
),
∴AB的中垂线为:y-
12t
3t2+4
=-t(x+
16
3t2+4
),
∴点P为(-
4
3t2+4
,0),∴P到直线l的距离d=
|
2t2+12
3t2+4
|
t2+1
=
12
t2+1
3t2+4

∵|AB|=
12
t2-4
3t2+4
1+t2

12
t2+1
3t2+4
=
3
2
12
t2-4
3t2+4
1+t2

∴t=±
4
3
3

∴存在点P为(-
1
5
,0).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网