题目内容
【题目】已知椭圆的两焦点分别为,,是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两直线、分别交椭圆于、两点.
(1)求点坐标;
(2)当直线经过点时,求直线的方程;
(3)求证直线的斜率为定值.
【答案】(1)(2)(3)证明见解析
【解析】
(1)设,由题意可知与,联立求解即可.
(2)由题意可知,的斜率为-1,的斜率为1,确定直线方程与直线的方程,然后分别与椭圆联立,求解,两点坐标,即可.
(3)由题意可知,直线、的斜率必存在,设的方程为:,与椭圆联立,求解点坐标,同理求解点坐标,求直线的斜率,即可.
(1)由题可得,,
设
则,.
∴即
∵点在曲线上,则.
解得点的坐标为.
(2)当直线经过点时,则的斜率为-1,
因两条直线、的倾斜角互补,故的斜率为1,
由得,,
即,故,
同理得,
∴直线的方程为
(3)依题意,直线、的斜率必存在,不妨设的方程为:.
由得,
设,则,,
同理,则,
同理.
所以,的斜率为定值.
练习册系列答案
相关题目
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式: , .
参考数据: .