题目内容
【题目】已知椭圆的左、右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线与的交点的轨迹为曲线,若,且是曲线上不同的点,满足,则的取值范围为( )
A. B. C. D.
【答案】A
【解析】
由已知条件推导出曲线C2:y2=4x.,,由
AB⊥BC,推导出,由此能求出的取值范围.
∵椭圆C1:+=1的左右焦点为F1,F2,
∴F1(﹣1,0),F2(1,0),直线l1:x=﹣1,
设l2:y=t,设P(﹣1,t),(t∈R),M(x,y),
则y=t,且由|MP|=|MF2|,
∴(x+1)2=(x﹣1)2+y2,
∴曲线C2:y2=4x.
∵A(1,2),B(x1,y1),C(x2,y2)是C2上不同的点,
∴,,
∵AB⊥BC,
∴=(x1﹣1)(x2﹣x1)+(y1﹣2)(y2﹣y1)=0,
∵,,
∴(﹣4)(﹣)+=0,
∵y1≠2,y1≠y2,
∴,
整理,得,
关于y1的方程有不为2的解,
∴,且y2≠﹣6,
∴0,且y2≠﹣6,
解得y2<﹣6,或y2≥10.
故选:A.
练习册系列答案
相关题目