题目内容

【题目】某中学根据2002﹣2014年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核远拔进入这三个社团成功与否相互独立,2015年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m, ,n,已知三个社团他都能进入的概率为 ,至少进入一个社团的概率为 ,且m>n.
(1)求m与n的值;
(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修字分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课字分分数的分布列及期望.

【答案】
(1)解:由题意, ,m>n

∴m= ,n=


(2)解:学分X的取值分别为0,1,2,3,4,5,6,则

P(X=0)= ,P(X=1)= × = ,P(X=2)= × = ,P(X=3)= + × =

P(X=4)= × = ,P(X=5)= = ,P(X=6)=

X的分布列

X

0

1

2

3

4

5

6

P

期望EX=0× +1× +2× +3× +4× +5× +6× =


【解析】(1)根据假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m, ,n,已知三个社团他都能进入的概率为 ,至少进入一个社团的概率为 ,且m>n,建立方程组,即可求m与n的值;(2)确定学分X的可能取值,求出相应的概率,可得X的分布列与数学期望

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网