题目内容
【题目】已知函数f(x)=log4(4x+1)+2kx(k∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范围.
【答案】
(1)解:由函数f(x)是偶函数可知,f(﹣x)=f(x),
∴log4(4x+1)+2kx=log4(4﹣x+1)﹣2kx,即log4 =﹣4kx,
∴log44x=﹣4kx,∴x=﹣4kx,即(1+4k)x=0,对一切x∈R恒成立,
∴k=﹣
(2)解:由m=f(x)=log4(4x+1)﹣ x=log4 =log4(2x+ ),
∵2x>0,∴2x+ ≥2,∴m≥log42= .
故要使方程f(x)=m有解,
m的取值范围为[ ,+∞)
【解析】(1)利用函数是偶函数,利用定义推出方程求解即可.(2)通过方程有解,求出函数的最值,即可推出m的范围.
练习册系列答案
相关题目