题目内容
【题目】从抛物线y2=32x上各点向x轴作垂线,其垂线段中点的轨迹为E.
(1)求轨迹E的方程;
(2)已知直线l:y=k(x-2)(k>0)与轨迹E交于A,B两点,且点F(2,0),若|AF|=2|BF|,求弦AB的长.
【答案】(1);(2)9
【解析】试题分析:(1)先设出垂线段的中点为M(x,y),P(x0,y0)是抛物线上的点,把它们坐标之间的关系找出来,代入抛物线的方程即可;
(2)根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B的中点横坐标,即可求出弦AB的长.
试题解析:
(1)设垂线段的中点M(x,y),P(x0,y0)是抛物线上的点,D(x0,0),因为M是PD的中点,所以x0=x,y=y0,有x0=x,y0=2y,因为点P在抛物线上,所以y02=32x,即4y2=32x,所以y2=8x,所求点M轨迹方程为:y2=8x.
(2)抛物线y2=8x的焦点坐标为(2,0),准线方程为x=-2,设A(x1,y1),B(x2,y2),则
∵|AF|=2|BF|,∴x1+2=2(x2+2),∴x1=2x2+2∵|y1|=2|y2|,∴x1=4x2,∴x1=4,x2=1,
∴|AB|=x1+x2+p=9.
【题目】某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成小块地,在总共小块地中,随机选小块地种植品种甲,另外小块地种植品种乙.
(1)假设,求第一大块地都种植品种甲的概率;
(2)试验时每大块地分成小块,即,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm2)如下表:
甲 | ||||||||
乙 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?