题目内容
【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________.
【答案】
【解析】
利用四分之一圆的面积和直角三角形面积公式求得阴影部分的面积,进而求得圆柱的体积.
表示的是四分之一的圆的面积,且圆的半径是,所以区域的面积为,所以圆柱的体积.
练习册系列答案
相关题目
【题目】某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如下表所示.
年龄 | ||||||
人数 | 100 | 150 | 200 | 50 |
已知,,三个年龄段的上网购物的人数依次构成递减的等比数列.
(1)求的值;
(2)若将年龄在内的上网购物者定义为“消费主力军”,其他年龄段内的上网购物者定义为“消费潜力军”.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.