题目内容
3.在△ABC中,∠BAC=135°,BC边上的高为1,则|BC|的最小值为2+2$\sqrt{2}$.分析 在△ABC中,由余弦定理有:BC2=AB2+AC2-2AB•ACcos135°=AB2+AC2+$\sqrt{2}$AB•AC=(AB-AC)2+AB•AC(2+$\sqrt{2}$)
因此:当AB=AC时,BC2有最小值,即BC有最小值,最小值是AB•$\sqrt{2+\sqrt{2}}$,求出AB,即可得出结论.
解答 解:在△ABC中,由余弦定理有:
BC2=AB2+AC2-2AB•ACcos135°=AB2+AC2+$\sqrt{2}$AB•AC=(AB-AC)2+AB•AC(2+$\sqrt{2}$)
因此:当AB=AC时,BC2有最小值,即BC有最小值,最小值是AB•$\sqrt{2+\sqrt{2}}$.
所以:此时根据勾股定理有AB2=1+($\frac{1}{2}$AB•$\sqrt{2+\sqrt{2}}$)2
求得:AB=$\frac{2}{\sqrt{2-\sqrt{2}}}$,
所以:BC=2+2$\sqrt{2}$.
故答案为:2+2$\sqrt{2}$.
点评 本题考查余弦定理的运用,考查学生的计算能力,正确运用余弦定理是关键.
练习册系列答案
相关题目
11.目前我国很多城市出现了雾霾天气,已经给广大人民的健康带来影响,其中汽车尾气排放是造成雾霾天气的重要因素之一,很多城市提倡绿色出行方式,实施机动车尾号限行.某市为了解民众对“车辆限行”的态度,随机调查了50人,并半调查结果制成如表:
(1)若从年龄在[55,65)的被调查者中随机选取2人进行跟踪调查,求恰有1名不赞成“车辆限行”的概率;
(2)把年龄在[15,45)称为中青年,年龄在[45,75)称为中老年,请根据上表完成2×2列联表,并说明民众对“车辆限行”的态度与年龄是否有关联.
参考公式和数据:x2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$
年龄(岁) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 6 | 9 | 6 | 3 | 4 |
(2)把年龄在[15,45)称为中青年,年龄在[45,75)称为中老年,请根据上表完成2×2列联表,并说明民众对“车辆限行”的态度与年龄是否有关联.
态度 年龄 | 赞成 | 不赞成 | 总计 |
中青年 | |||
中老年 | |||
总计 |
X2 | ≤2.706 | >2.706 | >3.841 | >6.635 |
A、B关联性 | 无关联 | 90% | 95% | 99% |
18.${∫}_{-1}^{1}$(sinx+x2)dx=( )
A. | 0 | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | 1 |
8.设函数f(x)=sin(ωx+φ)+$\sqrt{3}$cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)与直线y=2的相邻两个交点的距离为π,且f(x)-f(-x)=0,若g(x)=sin(ωx+φ),则( )
A. | y=g(x)在(0,$\frac{π}{2}$)上递减 | B. | y=g(x)在(0,$\frac{π}{6}$)上递减 | ||
C. | y=g(x)在(0,$\frac{π}{2}$)上递增 | D. | y=g(x)在(0,$\frac{π}{6}$)上递增 |
12.已知程序框图如图所示,则该程序框图的功能是( )
A. | 求数列{$\frac{1}{n}$}的前11项和(n∈N*) | B. | 求数列{$\frac{1}{2n}$}的前11项和(n∈N*) | ||
C. | 求数列{$\frac{1}{n}$}的前12项和(n∈N*) | D. | 求数列{$\frac{1}{2n}$的前12项和(n∈N*) |