题目内容
【题目】如图(1),在矩形中,,在边上,.沿,将和折起,使平面和平面都与平面垂直,如图(2).
(1)试判断图(2)中直线与的位置关系,并说明理由;
(2)求平面和平面所成锐角二面角的余弦值.
【答案】(1)∥.见解析(2).
【解析】
(1)分别取,的中点,,连结,,,,可证得与都与平面垂直,从而得它们平行且相等,得平行四边形,得,在图(1)中可证得,从而得结论;
(2)在边上取一点,使得,可证得,,两两垂直.以点为坐标原点,直线,,分别为坐标轴建立空间直角坐标系,用空间向量法求二面角的余弦.
解:(1).理由如下:
连结,分别取,的中点,,连结,,,由图(1)
可得,与都是等腰直角三角形且全等,则,,,如图.
∵平面平面,交线为,平面,,∴平面.
同理得,平面,∴.
又∵∴四边形为平行四边形,∴.
∵,分别是,的中点∴
∴.
(2)在边上取一点,使得.
由图(1)可得,为正方形,即.
∵为的中点∴.
由(1)知,平面,∴,,两两垂直.
以点为坐标原点,直线,,分别为坐标轴建立空间直角坐标系,如图.
设,则,,,,
∴,.
设平面的一个法向量为.
由得.
令,则,,∴.
由平面是坐标平面可得:平面一个法向量为.
设平面与平面所成的锐角二面角为,则
,
∴平面与平面所成锐二面角的余弦值为.
【题目】近年来,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.
(1)求的分布列及数学期望;
(2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出与的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?
(3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:
时长 | (0,15] | (15,30] | (30,45] | (45,60] |
人数 | 16 | 45 | 34 | 5 |
在(2)的活动条件下,每个品牌各应该投放多少辆?