题目内容
【题目】如图,在直角梯形中,∥,,,将直角梯形沿对角线折起,使点到点位置,则四面体的体积的最大值为________,此时,其外接球的表面积为________.
【答案】
【解析】
四面体的体积的最大值时,面面,点到面的距离为斜边上的高.求得即可求得四面体的体积的最大值,的外心为斜边的中点,的外心为,过作面的垂线,过作面的垂线,两垂线的交点即为球心,由面面,即可得即为球心,利用正弦定理即可得的外接圆半径即为球半径.
如图,四面体的体积的最大值时,面面,
点到面的距离为斜边上的高.
∵,
故最大体积为
的外心为斜边的中点,的外心为,
过作面的垂线,过作面的垂线,两垂线的交点即为球心.
∵面面,
∴即为球心,的外接圆半径即为球半径.
∴
∴外接球的表面积为.
故答案为:.
练习册系列答案
相关题目
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 5 | 18 | 19 | 6 | 1 |
图1:乙套设备的样本的频率分布直方图
(Ⅰ)将频率视为概率. 若乙套设备生产了5000件产品,则其中的不合格品约有多少件;
(Ⅱ)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备 | 乙套设备 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(Ⅲ)根据表1和图1,对两套设备的优劣进行比较.
附:
.