题目内容
【题目】甲、乙两名同学8次数学测验成绩如茎叶图所示, 1 , 2分别表示甲、乙两名同学8次数学测验成绩的平均数,s1 , s2分别表示甲、乙两名同学8次数学测验成绩的标准差,则有( )
A.1> 2 , s1<s2
B.1= 2 , s1<s2
C.1= 2 , s1=s2
D.1< 2 , s1>s2
【答案】B
【解析】解:由茎叶图可知,甲的成绩分别为:78,79,84,85,85,86,91,92,
乙的成绩分别为:77,78,83,85,85,87,92,93,
所以 = (78+79+84+85+85+86+91+92)=85,
s12= [(78﹣85)2+(79﹣85)2+0+0+(86﹣85)2+(91﹣85)2+(92﹣85)2]= ,
2= (77+78+83+85+85+87+92+93)=85,
s22= [(77﹣85)2+(78﹣85)2+0+0+(87﹣85)2+(92﹣85)2+(93﹣85)2]= ,
∴ 1= 2 , s1<s2
故选:B
【考点精析】通过灵活运用茎叶图和平均数、中位数、众数,掌握茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少;⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据即可以解答此题.
【题目】学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为150分),数学成绩分组及各组频数如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在120分以上(含120分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[135,150]的学生中选两位同学,共同帮助成绩在[60,75)中的某一位同学.已知甲同学的成绩为62分,乙同学的成绩为140分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表:
分组 | 频数 | 频率 |
[60,75) | 2 | 0.04 |
[75,90) | 3 | 0.06 |
[90,105) | 14 | 0.28 |
[105,120) | 15 | 0.30 |
[120,135) | A | B |
[135,150] | 4 | 0.08 |
合计 | C | D |