题目内容

4.若$\frac{cos(2α-π)}{sin(α+\frac{π}{4})}$=$\frac{\sqrt{2}}{2}$,则sinα-cosα的值为(  )
A.-$\frac{\sqrt{7}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{7}}{2}$

分析 已知等式左边利用诱导公式及两角和与差的正弦函数公式化简,整理即可求出所求式子的值.

解答 解:∵$\frac{cos(2α-π)}{sin(α+\frac{π}{4})}$=$\frac{-cos2α}{\frac{\sqrt{2}}{2}(sinα+cosα)}$=$\frac{(sinα+cosα)(sinα-cosα)}{\frac{\sqrt{2}}{2}(sinα+cosα)}$=$\sqrt{2}$(sinα-cosα)=$\frac{\sqrt{2}}{2}$,
则sinα-cosα=$\frac{1}{2}$,
故选:C.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网