题目内容
.已知定义在R上的函数f(x)=
( a , b , c , d∈R )的图象关于原点对称,且x = 1时,f(x)取极小值
。
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,图象旧否存在两点,使得此两面三刀点处的切线互相垂直?试证明你的结论;
(Ⅲ)若
∈[-1,1]时,求证:| f (
)-f(
)|≤
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604398552.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604429244.gif)
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,图象旧否存在两点,使得此两面三刀点处的切线互相垂直?试证明你的结论;
(Ⅲ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604491220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604507216.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604523201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604538222.gif)
(1)f(x)=
(2) 当x∈[-1,1]时,图象上不存在这样的两点使得结论成立
(3)同解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604554365.gif)
(2) 当x∈[-1,1]时,图象上不存在这样的两点使得结论成立
(3)同解析
Ⅰ)∵函数f(x)的图象关于原点对称,
∴f(0)= 0,即4d = 0,∴d = 0
又f(-1)=" -" f(1),
即-a - 2b - c =" -a" + 2b – c ,∴b = 0
∴f(x)=
+cx ,f ′(x)= 3a
+c .
∵x = 1时,f(x)取极小值
,
∴ 3a + c = 0且 a + c =
.
解得a =
,c =
.
∴f(x)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604554365.gif)
(Ⅱ)当x∈[-1,1]时,图象上不存在这样的两点使得结论成立。
假设图象上存在两点A(
,
),B(
,
),使得过此两点处的切线互相垂直,则由f ′(x)=
(
-1)知两点处的切线斜率分别为
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604835222.gif)
,
=
,且
=" 1 " (*)
∵
,
∈[-1,1],
∴
-1≤0,
-1≤0
∴(
-1)(
-1)≥0 此与(*)矛盾,故假设不成立
(Ⅲ)(理科)证明:f ′(x)=
(
-1),令f ′(x)= 0,得x = ±1
∴x∈(-∞,-1)或x∈(1,+∞)时,f ′(x)>0,x∈(-1,1)时,f ′(x)<0
∴f(x)在[-1,1]上是减函数,且
(x)=f(-1)=
,
(x)=f(1)=
.
∴在[-1,1]上| f(x)|≤
,于是
,
∈[-1,1]时,
|f(
)-f(
)|≤|f(
)|+|f(
)|≤
∴f(0)= 0,即4d = 0,∴d = 0
又f(-1)=" -" f(1),
即-a - 2b - c =" -a" + 2b – c ,∴b = 0
∴f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604585332.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604616205.gif)
∵x = 1时,f(x)取极小值
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604429244.gif)
∴ 3a + c = 0且 a + c =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604429244.gif)
解得a =
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604663220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604679241.gif)
∴f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604554365.gif)
(Ⅱ)当x∈[-1,1]时,图象上不存在这样的两点使得结论成立。
假设图象上存在两点A(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604757201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604788203.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604523201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604819309.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604835222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604616205.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604866214.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604835222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605100421.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605115215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605131495.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605240682.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604757201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604523201.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605459218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605505216.gif)
∴(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605459218.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605505216.gif)
(Ⅲ)(理科)证明:f ′(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604835222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604616205.gif)
∴x∈(-∞,-1)或x∈(1,+∞)时,f ′(x)>0,x∈(-1,1)时,f ′(x)<0
∴f(x)在[-1,1]上是减函数,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605677344.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605693221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605708344.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604429244.gif)
∴在[-1,1]上| f(x)|≤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605693221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604757201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604523201.gif)
|f(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604757201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604523201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604757201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132604523201.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132605880364.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目