题目内容
【题目】已知函数f(x)=|2x+1|﹣|x|﹣2
(1)解不等式f(x)≥0
(2)若存在实数x,使得f(x)≤|x|+a,求实数a的取值范围.
【答案】
(1)解:函数f(x)=|2x+1|﹣|x|﹣2= ,
当x<﹣ 时,由﹣x﹣3≥0,可得x≤﹣3.
当﹣ ≤x<0时,由3x﹣1≥0,求得 x∈.
当x≥0时,由x﹣1≥0,求得 x≥1.
综上可得,不等式的解集为{x|x≤﹣3 或x≥1}.
(2)解:f(x)≤|x|+a,即|x+ |﹣|x|≤ +1①,由题意可得,不等式①有解.
由于|x+ |﹣|x|表示数轴上的x对应点到﹣ 对应点的距离减去它到原点的距离,故|x+ |﹣|x|∈[﹣ , ],
故有 +1≥﹣ ,求得a≥﹣3
【解析】(1)化简函数的解析式,分类讨论,求得不等式的解集.(2)不等式即|x+ |﹣|x|≤ +1①,由题意可得,不等式①有解.根据绝对值的意义可得|x+ |﹣|x|∈[﹣ , ],故有 +1≥﹣ ,由此求得a的范围.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));
租用单车数量 (千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).