题目内容
【题目】如图1所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2所示五棱锥P﹣ABFED,且AP= ,
(1)求证:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.
【答案】
(1)证明: PO⊥EF,AO⊥EF,所以EF⊥平面POA,因为BD∥EF
∴BD⊥平面POA
则PO⊥BD,又AO⊥BD,AO∩PO=O,AO平面APO,PO平面APO,
∴BD⊥平面APO
(2)解:因为AP= ,可证PO⊥AO,所以EF,PO,AO互相垂直
以O为原点,OA为x轴,OF为y轴,OP为z轴,建立坐标系,
则O(0,0,0),A(3 ,0,0),P(0,0, ),B( ,2,0),
设 =(x,y,z)为平面OAP的一个法向量,
则 =(0,1,0), =(x,y,z)为平面ABP的一个法向量,
=(﹣2 ,2,0), =(﹣3 ,0, ),
则 ,令x=1,则y= ,z=3,
则 =(1, ,3)….cosθ= = ,∴tanθ=
∴二面角B﹣AP﹣O的正切值为
【解析】(1)证明PO⊥BD,AO⊥BD,可得BD⊥平面APO,(2)以O为原点,OA为x轴,OF为y轴,OP为z轴,建立坐标系,则O(0,0,0),A(3 ,0,0),P(0,0, ),B( ,2,0),求出平面OAP的一个法向量,平面ABP的一个法向量即可
【考点精析】根据题目的已知条件,利用直线与平面垂直的判定的相关知识可以得到问题的答案,需要掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.