题目内容

【题目】已知函数是定义域为的奇函数,当.

(Ⅰ)求出函数上的解析式;

(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;

(Ⅲ)若关于的方程有三个不同的解,求的取值范围

【答案】(Ⅰ);(Ⅱ)单调增区间为

单调减区间为(Ⅲ) .

【解析】试题分析; (Ⅰ)①由于函数是定义域为的奇函数,则

②当时, ,因为是奇函数,所以可得当 的解析式,从而得到上的解析式
(Ⅱ)根据(Ⅰ)得到的解析式可画出函数的图象,进而得到的单调区间

(Ⅲ)由(1)可得 有极大值1,极小值-1,进而可构造关于 的不等式,解不等式可得答案.

试题分析;(Ⅰ)①由于函数是定义域为的奇函数,则

②当时, ,因为是奇函数,所以

所以.

综上:

(Ⅱ)图象如图所示.(图像给2分)

单调增区间:

单调减区间:

(Ⅲ)∵方程有三个不同的解

练习册系列答案
相关题目

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网