题目内容
【题目】某中学作为蓝色海洋教育特色学校,随机抽取100名学生,进行一次海洋知识测试,按测试成绩(假设考试成绩均在[65,90)内)分组如下:第一组[65,70),第二组 [70,75),第三组[75,80),第四组 [80,85),第五组 [85,90).得到频率分布直方图如图C34.
(1)求测试成绩在[80,85)内的频率;
(2)从第三、四、五组学生中用分层抽样的方法抽取6名学生组成海洋知识宣讲小组,定期在校内进行义务宣讲,并在这6名学生中随机选取2名参加市组织的蓝色海洋教育义务宣讲队,求第四组至少有1名学生被抽中的概率.
【答案】(1);(2)见解析;(3)
【解析】
试题分析:(1)由所有频率的和为,易得测试成绩在[80,85)内的频率;(2)先分别求出第三组、第四组、第五组的人数,再由分层抽样方法得各组应该抽取的人数。用字母表示所研究的事件,用列举法得基本事件的总数以及所研究事件含多少个基本事件,最后利用古典概型公式求得概率.
试题解析:(1)测试成绩在[80,85)内的频率为:2分
3分
(2)第三组的人数等于,第四组的人数等于,
第五组的人数等于, 5分
分组抽样各组的人数为第三组3人,第四组2人,第五组1人. 6分
设第三组抽到的3人为,第四组抽到的2人为,第五组抽到的1人为. 7分
这6名同学中随机选取2名的可能情况有15种,如下:
. 10分
设“第四组2名同学至少有一名同学被抽中”为事件,事件包含的事件个数有9种,即:
,,, ,. 11分
所以, 事件的概率即第四组至少有一名同学被抽中的概率为. 12分
【题目】电容器充电后,电压达到100 V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式U=Aebt(b<0)表示,现测得时间t(s)时的电压U(V)如下表:
t(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
U(V) | 100 | 75 | 55 | 40 | 30 | 20 | 15 | 10 | 10 | 5 | 5 |
试求:电压U对时间t的回归方程.(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)