题目内容
【题目】已知圆M:x2+y2﹣2x+a=0.
(1)若a=﹣8,过点P(4,5)作圆M的切线,求该切线方程;
(2)若AB为圆M的任意一条直径,且 =﹣6(其中O为坐标原点),求圆M的半径.
【答案】
(1)解:若a=﹣8,圆M:x2+y2﹣2x+a=0即(x﹣1)2+y2=9,圆心(1,0),半径为3,
斜率不存在时,x=4,满足题意;
斜率存在时,切线l的斜率为 k,则 l:y﹣5=k(x﹣4),即l:kx﹣y﹣4k+5=0
由 =3,解得k= ,∴l:8x﹣15y+43=0,
综上所述切线方程为x=4或8x﹣15y+43=0
(2)解: =( + )( + )=1﹣(1﹣a)=﹣6,∴a=﹣6,
∴圆M的半径= =
【解析】(1)分类讨论:当切线的斜率存在时,设切线的方程为 l:y﹣5=k(x﹣4),利用直线与圆相切的性质即可得出.斜率不存在时直接得出即可.(2) =( + )( + ),即可得出结论.
练习册系列答案
相关题目
【题目】有两个分类变量x与y,其一组观测值如下面的2×2列联表所示:
y1 | y2 | |
x1 | a | 20-a |
x2 | 15-a | 30+a |
其中a,15-a均为大于5的整数,则a取何值时,在犯错误的概率不超过0.1的前提下认为x与y之间有关系?