题目内容
【题目】已知椭圆C1与双曲线C2有相同的左右焦点F1,F2,P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率分别为e1,e2,且=,若∠F1PF2=,则双曲线C2的渐近线方程为( )
A. x±y=0 B. x±y=0
C. x±y=0 D. x±2y=0
【答案】C
【解析】
设椭圆C1:=1(a>b>0),双曲线C2:=1(m>0,n>0),依题意c1=c2=c,且=∴=,则a=3m.由圆锥曲线定义,得|PF1|+|PF2|=2a,且|PF1|-|PF2|=2m∴|PF1|=4m,|PF2|=2m.在△F1PF2中,由余弦定理,得:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos=12m2,∴c2=3m2,则n2=c2-m2=2m2,因此双曲线C2的渐近线方程为y=±x,即x±y=0.故选C.
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为)
组别 | 步数分组 | 频数 |
2 | ||
10 | ||
2 | ||
(Ⅰ)写出的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记组步数数据的平均数与方差分别为,,组步数数据的平均数与方差分别为,,试分别比较与以,与的大小;(只需写出结论)
(Ⅲ)从上述两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为,求的分布列和数学期望.