题目内容

【题目】如图,在正方形ABCD中,E为AB的中点,P为以A为圆心、AB为半径的圆弧上的任意一点,设向量 ,则λ+μ的最小值为

【答案】
【解析】解:以A为原点,以AB所在的为x轴,建立坐标系,设正方形ABCD的边长为1, 则E( ,0),C(1,1),D(0,1),A(0,0),B(1,0).
设 P(cosθ,sinθ),∴ =(1,1).
再由向量 =λ( ,﹣1)+μ(cosθ,sinθ)=( ,﹣λ+μsinθ )=(1,1),
,∴
∴λ+μ= = =﹣1+
由题意得 0≤θ≤ ,∴0≤cosθ≤1,0≤sinθ≤1.
求得(λ+μ)′= = >0,
故λ+μ在[0, ]上是增函数,故当θ=0时,即cosθ=1,这时λ+μ取最小值为 =
故答案为:
建立坐标系,设正方形ABCD的边长为1,求出向量 =( ,﹣λ+μsinθ )=(1,1),用cosθ,sinθ表示 λ和μ,根据cosθ,sinθ 的取值范围,再结合λ+μ的单调性,求出λ+μ= 的最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网