题目内容
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线 的参数方程为(为参数).
(1)直线过且与曲线相切,求直线的极坐标方程;
(2)点与点关于轴对称,求曲线上的点到点的距离的取值范围.
【答案】(1)或;(2).
【解析】
试题分析:对于问题(1)可以先求出点的直角坐标以及曲线的普通方程,利用直线过且与曲线相切,即可求直线的极坐标方程;对问题(2)可以先根据点与点关于轴对称,求出点的坐标,再求出点到圆心的距离,从而可求曲线上的点到点的距离的取值范围.
试题解析:(1)由题意得点的直角坐标为,曲线的一般方程为
设直线的方程为,即,
∵直线过且与曲线 相切,∴,
即,解得,
∴直线的极坐标方程为或,
(2)∵点与点关于轴对称,∴点的直角坐标为,
则点到圆心的距离为,
曲线上的点到点的距离的最小值为,最大值为,
曲线 上的点到点的距离的取值范围为
练习册系列答案
相关题目
【题目】某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如下表:
阅读名著的本数 | 1 | 2 | 3 | 4 | 5 |
男生人数 | 3 | 1 | 2 | 1 | 3 |
女生人数 | 1 | 3 | 3 | 1 | 2 |
(1)试根据上述数据,求这个班级女生阅读名著的平均本数;
(2)若从阅读本名著的学生中任选人交流读书心得,求选到男生和女生各人的概率;
(3)试比较该班男生阅读名著本数的方差与女生阅读名著本数的方差的大小(只需写出结论).