ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬Á¬½ÓÍÖÔ²µÄËĸö¶¥µãµÃµ½µÄËıßÐεÄÃæ»ýΪ4$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©¹ýµã£¨m£¬0£©£¨m£¾$\sqrt{6}$£©ÇÒбÂÊΪ-$\frac{{\sqrt{3}}}{3}$µÄÖ±Ïßl½»ÍÖÔ²ÓÚC£¬DÁ½µã£¬FΪÍÖÔ²µÄÓÒ½¹µã£¬Èç¹û|CD|2=4|FC|•|FD|£¬Çó¡ÏCFDµÄ´óС£®

·ÖÎö £¨1£©ÓÉÀëÐÄÂʿɵÃa£¬bµÄ¹Øϵ£¬ÔÙÓÉÁ¬½ÓÍÖÔ²µÄËĸö¶¥µãµÃµ½µÄËıßÐεÄÃæ»ýΪ$4\sqrt{3}$£¬µÃµ½a£¬bµÄÁíÒ»¹Øϵ£¬ÁªÁ¢Çó³öa£¬bµÃ´ð°¸£»
£¨2£©ÓÉÌâÒâµÃÖ±ÏßlµÄ·½³ÌΪ$y=-\frac{\sqrt{3}}{3}£¨x-m£©£¨m£¾\sqrt{6}£©$£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÍÖÔ²·½³Ì£¬ÓÉ¡÷£¾0Çó³ömµÄ·¶Î§£¬ÔÙÀûÓøùÓëϵÊýµÄ¹ØϵÇó³öC£¬DÁ½µãºá×ø±êµÄºÍÓë»ý£¬½øÒ»²½°Ñ|CD||FC|Óú¬ÓÐmµÄ´úÊýʽ±íʾ£¬½áºÏ|CD|2=4|FC|•|FD|ÇóµÃm=3£¬¿ÉµÃ$\overrightarrow{FC}•\overrightarrow{FD}=£¨{x}_{1}-2£©£¨{x}_{2}-2£©+{y}_{1}{y}_{2}$=$\frac{4}{3}{x}_{1}{x}_{2}-\frac{m+6}{3}£¨{x}_{1}{+x}_{2}£©+\frac{{m}^{2}}{3}+4$=$\frac{2£¨{m}^{2}-3m£©}{3}=0$£®
Ôò¡ÏCFDµÄ´óС¿ÉÇó£®

½â´ð ½â£ºÈçͼ£¬
£¨1£©¡ß$e=\frac{c}{a}=\sqrt{1-\frac{b^2}{a^2}}=\frac{{\sqrt{6}}}{3}$£¬¡à$a=\sqrt{3}b$£¬
ÓÖÁ¬½ÓÍÖÔ²µÄËĸö¶¥µãµÃµ½µÄËıßÐεÄÃæ»ýΪ$4\sqrt{3}$£¬
¡à$2ab=4\sqrt{3}$£¬¼´$ab=2\sqrt{3}$£¬
¡àa2=6£¬b2=2£¬Òò´ËÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{6}+\frac{y^2}{2}=1$£»
£¨2£©ÓÉÌâÒâµÃÖ±ÏßlµÄ·½³ÌΪ$y=-\frac{\sqrt{3}}{3}£¨x-m£©£¨m£¾\sqrt{6}£©$£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\\{y=-\frac{\sqrt{3}}{3}£¨x-m£©}\end{array}\right.$£¬µÃ2x2-2mx+m2-6=0£®
ÓÉ¡÷=4m2-8£¨m2-6£©£¾0£¬½âµÃ$-2\sqrt{3}£¼m£¼2\sqrt{3}$£®
ÓÖm$£¾\sqrt{6}$£¬¡à$\sqrt{6}£¼m£¼2\sqrt{3}$£¬
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=m£¬{x}_{1}{x}_{2}=\frac{{m}^{2}-6}{2}$£¬
¡à|CD|=$\sqrt{1+£¨-\frac{\sqrt{3}}{3}£©^{2}}•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{2}{3}\sqrt{3}•\sqrt{12-{m}^{2}}$£®
ÓÖ¡ß|FC|=$\sqrt{£¨{x}_{1}-2£©^{2}+{{y}_{1}}^{2}}=\sqrt{£¨{{x}_{1}}^{2}-4{x}_{1}+4£©+\frac{6-{{x}_{1}}^{2}}{3}}$=$\sqrt{\frac{2}{3}}£¨3-{x}_{1}£©$£®
|FD|=$\sqrt{£¨{x}_{2}-2£©^{2}+{{y}_{2}}^{2}}=\sqrt{£¨{{x}_{2}}^{2}-4{x}_{2}+4£©+\frac{6-{{x}_{2}}^{2}}{3}}$=$\sqrt{\frac{2}{3}}£¨3-{x}_{2}£©$£®
|FC||FD|=$\frac{2}{3}£¨3-{x}_{1}£©£¨3-{x}_{2}£©=\frac{2}{3}[{x}_{1}{x}_{2}-3£¨{x}_{1}+{x}_{2}£©+9]$=$\frac{1}{3}£¨{m}^{2}-6m+12£©$£®
ÓÉ|CD|2=4|FC|•|FD|£¬µÃ$\frac{4}{3}£¨12-m£©^{2}=\frac{4}{3}£¨{m}^{2}-6m+12£©$£¬½âµÃm=0»òm=3£®
ÓÖ$\sqrt{6}£¼m£¼2\sqrt{3}$£¬¡àm=3£¬
ÓÖ¡ß$\overrightarrow{FC}=£¨{x}_{1}-2£¬{y}_{1}£©£¬\overrightarrow{FD}=£¨{x}_{2}-2£¬{y}_{2}£©$£¬
ÇÒ${y}_{1}{y}_{2}=[-\frac{\sqrt{3}}{3}£¨{x}_{1}-m£©]•[-\frac{\sqrt{3}}{3}£¨{x}_{2}-m£©]$=$\frac{1}{3}{x}_{1}{x}_{2}-\frac{m}{3}£¨{x}_{1}+{x}_{2}£©+\frac{{m}^{2}}{3}$£®
¡à$\overrightarrow{FC}•\overrightarrow{FD}=£¨{x}_{1}-2£©£¨{x}_{2}-2£©+{y}_{1}{y}_{2}$=$\frac{4}{3}{x}_{1}{x}_{2}-\frac{m+6}{3}£¨{x}_{1}{+x}_{2}£©+\frac{{m}^{2}}{3}+4$=$\frac{2£¨{m}^{2}-3m£©}{3}=0$£®
¡à¡ÏCFD=90¡ã£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÁËÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÖ±ÏßÓëԲ׶ÇúÏßλÖùØϵµÄÓ¦Óã¬Éæ¼°Ö±ÏßÓëԲ׶ÇúÏߵĹØϵÎÊÌ⣬³£²ÉÓðÑÖ±Ïß·½³ÌºÍԲ׶ÇúÏß·½³ÌÁªÁ¢£¬ÀûÓøùÓëϵÊýµÄ¹ØϵÇó½â£¬ÑµÁ·ÁËƽÃæÏòÁ¿ÔÚÇó½âԲ׶ÇúÏßÎÊÌâÖеÄÓ¦Óã¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø