题目内容
已知函数
,
,(
为自然对数的底数).
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)函数
在区间
上恒为正数,求
的最小值;
(Ⅲ)若对任意给定的
,在
上总存在两个不同的
,使得
成立,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159703833.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159734604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159765542.png)
(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159781383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159796447.png)
(Ⅱ)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159796447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159828564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159906323.png)
(Ⅲ)若对任意给定的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200108621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200124447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200140626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200155673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159906323.png)
(Ⅰ)
的单调减区间为
,单调增区间为
(Ⅱ)
(Ⅲ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200311440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159796447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200218460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200233537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200311440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200311440.png)
试题分析:(Ⅰ)函数f (x)的定义域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200327563.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200342351.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032003741088.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200405722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200420779.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159796447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200218460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200233537.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200498537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159828564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200530656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159828564.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200576926.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200592819.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200608449.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200623431.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200795461.png)
故在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200795461.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200826711.png)
从而要使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200982576.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200998660.png)
只要
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201013495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201013315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200311440.png)
(Ⅲ)一次函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159734604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201060303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159734604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200124447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201107424.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201122379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201138645.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201154408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032011541428.png)
要使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159796447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200124447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201200625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201216551.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003159796447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201247519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201263495.png)
注意到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201278406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201294617.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032013102320.png)
∴对任意给定的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201325478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201325416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200140626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200155673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201013315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032013881062.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032014031307.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240032014191368.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201434584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201450575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201466471.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201497588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201497568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201466471.png)
所以,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201528654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201559648.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201466471.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201590648.png)
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201606671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201622599.png)
∴ 综合①②可知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200311440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003201653623.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200124447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200140626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824003200155673.png)
点评:导数是研究函数性质的有力工具,研究单调性、极值、最值时不要忘记先求函数的定义域,而不等式恒成立问题,一般转化为函数的最值问题解决,分类讨论时要注意分类标准要不重不漏.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目