题目内容
【题目】在正四棱锥V﹣ABCD中(底面是正方形,侧棱均相等),AB=2,VA= ,且该四棱锥可绕着AB任意旋转,旋转过程中CD∥平面α,则正四棱锥V﹣ABCD在平面α内的正投影的面积的取值范围是( )
A.[2,4]
B.(2,4]
C.[ ,4]
D.[2,2 ]
【答案】A
【解析】解:由题意,侧面上的高为 = ,∴侧面的面积为 =2,
又由于底面的面积为2×2=4,
当正四棱锥的高平行于面时面积最小是2,
∴正四棱锥V﹣ABCD在面α内的投影面积的取值范围是[2,4],
故选:A.
【考点精析】根据题目的已知条件,利用棱锥的结构特征的相关知识可以得到问题的答案,需要掌握侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
练习册系列答案
相关题目
【题目】本市某玩具生产公司根据市场调查分析,决定调整产品生产方案,准备每天生产, , 三种玩具共100个,且种玩具至少生产20个,每天生产时间不超过10小时,已知生产这些玩具每个所需工时(分钟)和所获利润如表:
玩具名称 | |||
工时(分钟) | 5 | 7 | 4 |
利润(元) | 5 | 6 | 3 |
(Ⅰ)用每天生产种玩具个数与种玩具表示每天的利润(元);
(Ⅱ)怎样分配生产任务才能使每天的利润最大,最大利润是多少?